Bohr, Niels, 1885-1962
Niels Henrik David Bohr; b. 7 October 1885, Copenhagen, Denmark; died 18 November 1962 (aged 77), Copenhagen, Denmark; parents Christian Bohr and Ellen Adler Bohr; In 1903, Bohr enrolled as an undergraduate at Copenhagen University. His major was physics, which he studied under Professor Christian Christiansen, the university's only professor of physics at that time. He also studied astronomy and mathematics under Professor Thorvald Thiele, and philosophy under Professor Harald Høffding, a friend of his father; In 1905, a gold medal competition was sponsored by the Royal Danish Academy of Sciences and Letters to investigate a method for measuring the surface tension of liquids that had been proposed by Lord Rayleigh in 1879. This involved measuring the frequency of oscillation of the radius of a water jet. Bohr conducted a series of experiments using his father's laboratory in the university; the university itself had no physics laboratory. To complete his experiments, he had to make his own glassware, creating test tubes with the required elliptical cross-sections. He went beyond the original task, incorporating improvements into both Rayleigh's theory and his method, by taking into account the viscosity of the water, and by working with finite amplitudes instead of just infinitesimal ones. His essay, which he submitted at the last minute, won the prize. He later submitted an improved version of the paper to the Royal Society in London for publication in the Philosophical Transactions of the Royal Society; Bohr subsequently elaborated his master's thesis into his much-larger Doctor of Philosophy (dr. phil.) thesis. He surveyed the literature on the subject, settling on a model postulated by Paul Drude and elaborated by Hendrik Lorentz, in which the electrons in a metal are considered to behave like a gas. Bohr extended Lorentz's model, but was still unable to account for phenomena like the Hall effect, and concluded that electron theory could not fully explain the magnetic properties of metals; Bohr's thesis was groundbreaking, but attracted little interest outside Scandinavia because it was written in Danish, a Copenhagen University requirement at the time. In 1921, the Dutch physicist Hendrika Johanna van Leeuwen would independently derive a theorem from Bohr's thesis that is today known as the Bohr–van Leeuwen theorem; In 1910, Bohr met Margrethe Nørlund, the sister of the mathematician Niels Erik Nørlund; Bohr and Margrethe had six sons. The oldest, Christian, died in a boating accident in 1934, and another, Harald, died from childhood meningitis. Aage Bohr became a successful physicist, and in 1975 was awarded the Nobel Prize in physics, like his father. Hans Bohr became a physician; Erik Bohr, a chemical engineer; and Ernest, a lawyer. Like his uncle Harald, Ernest Bohr became an Olympic athlete, playing field hockey for Denmark at the 1948 Summer Olympics in London; n September 1911, Bohr, supported by a fellowship from the Carlsberg Foundation, travelled to England. At the time, it was where most of the theoretical work on the structure of atoms and molecules was being done. He met J. J. Thomson of the Cavendish Laboratory and Trinity College, Cambridge. He attended lectures on electromagnetism given by James Jeans and Joseph Larmor, and did some research on cathode rays, but failed to impress Thomson. He had more success with younger physicists like the Australian William Lawrence Bragg, and New Zealand's Ernest Rutherford, whose 1911 small central nucleus Rutherford model of the atom had challenged Thomson's 1904 plum pudding model. Bohr received an invitation from Rutherford to conduct post-doctoral work at Victoria University of Manchester, where Bohr met George de Hevesy and Charles Galton Darwin (whom Bohr referred to as "the grandson of the real Darwin"); On his return, he became a privatdocent at the University of Copenhagen, giving lectures on thermodynamics. Martin Knudsen put Bohr's name forward for a docent, which was approved in July 1913, and Bohr then began teaching medical students; The model's first hurdle was the Pickering series, lines which did not fit Balmer's formula. When challenged on this by Alfred Fowler, Bohr replied that they were caused by ionised helium, helium atoms with only one electron. The Bohr model was found to work for such ions. Many older physicists, like Thomson, Rayleigh and Hendrik Lorentz, did not like the trilogy, but the younger generation, including Rutherford, David Hilbert, Albert Einstein, Enrico Fermi, Max Born and Arnold Sommerfeld saw it as a breakthrough. The trilogy's acceptance was entirely due to its ability to explain phenomena which stymied other models, and to predict results that were subsequently verified by experiments. Today, the Bohr model of the atom has been superseded, but is still the best known model of the atom, as it often appears in high school physics and chemistry texts. Bohr did not enjoy teaching medical students. He decided to return to Manchester, where Rutherford had offered him a job as a reader in place of Darwin, whose tenure had expired. Bohr accepted. He took a leave of absence from the University of Copenhagen, which he started by taking a holiday in Tyrol with his brother Harald and aunt Hanna Adler. There, he visited the University of Göttingen and the Ludwig Maximilian University of Munich, where he met Sommerfeld and conducted seminars on the trilogy. The First World War broke out while they were in Tyrol, greatly complicating the trip back to Denmark and Bohr's subsequent voyage with Margrethe to England, where he arrived in October 1914. They stayed until July 1916, by which time he had been appointed to the Chair of Theoretical Physics at the University of Copenhagen, a position created especially for him. His docentship was abolished at the same time, so he still had to teach physics to medical students. New professors were formally introduced to King Christian X, who expressed his delight at meeting such a famous football player; In April 1917, Bohr began a campaign to establish an Institute of Theoretical Physics. He gained the support of the Danish government and the Carlsberg Foundation, and sizeable contributions were also made by industry and private donors, many of them Jewish. Legislation establishing the Institute was passed in November 1918. Now known as the Niels Bohr Institute, it opened on 3 March 1921, with Bohr as its director; Early arrivals included Hans Kramers from the Netherlands, Oskar Klein from Sweden, George de Hevesy from Hungary, Wojciech Rubinowicz from Poland and Svein Rosseland from Norway; In 1922, Bohr was awarded the Nobel Prize in Physics "for his services in the investigation of the structure of atoms and of the radiation emanating from them"; The discovery of Compton scattering by Arthur Holly Compton in 1923 convinced most physicists that light was composed of photons, and that energy and momentum were conserved in collisions between electrons and photons. In 1924, Bohr, Kramers and John C. Slater, an American physicist working at the Institute in Copenhagen, proposed the Bohr–Kramers–Slater theory (BKS). It was more a programme than a full physical theory, as the ideas it developed were not worked out quantitatively. BKS theory became the final attempt at understanding the interaction of matter and electromagnetic radiation on the basis of the old quantum theory, in which quantum phenomena were treated by imposing quantum restrictions on a classical wave description of the electromagnetic field; The introduction of spin by George Uhlenbeck and Samuel Goudsmit in November 1925 was a milestone. The next month, Bohr travelled to Leiden to attend celebrations of the 50th anniversary of Hendrick Lorentz receiving his doctorate. When his train stopped in Hamburg, he was met by Wolfgang Pauli and Otto Stern, who asked for his opinion of the spin theory. Bohr pointed out that he had concerns about the interaction between electrons and magnetic fields. When he arrived in Leiden, Paul Ehrenfest and Albert Einstein informed Bohr that Einstein had resolved this problem using relativity. Bohr then had Uhlenbeck and Goudsmit incorporate this into their paper. Thus, when he met Werner Heisenberg and Pascual Jordan in Göttingen on the way back, he had become, in his own words, "a prophet of the electron magnet gospel"; In 1914, Carl Jacobsen, the heir to Carlsberg breweries, bequeathed his mansion to be used for life by the Dane who had made the most prominent contribution to science, literature or the arts, as an honorary residence (Danish: Æresbolig). Harald Høffding had been the first occupant, and upon his death in July 1931, the Royal Danish Academy of Sciences and Letters gave Bohr occupancy. He and his family moved there in 1932. He was elected president of the Academy on 17 March 1939; Bohr read the 19th-century Danish Christian existentialist philosopher, Søren Kierkegaard. Richard Rhodes argued in The Making of the Atomic Bomb that Bohr was influenced by Kierkegaard through Høffding; The rise of Nazism in Germany prompted many scholars to flee their countries, either because they were Jewish or because they were political opponents of the Nazi regime. In 1933, the Rockefeller Foundation created a fund to help support refugee academics, and Bohr discussed this programme with the President of the Rockefeller Foundation, Max Mason, in May 1933 during a visit to the United States. Bohr offered the refugees temporary jobs at the Institute, provided them with financial support, arranged for them to be awarded fellowships from the Rockefeller Foundation, and ultimately found them places at institutions around the world. Those that he helped included Guido Beck, Felix Bloch, James Franck, George de Hevesy, Otto Frisch, Hilde Levi, Lise Meitner, George Placzek, Eugene Rabinowitch, Stefan Rozental, Erich Ernst Schneider, Edward Teller, Arthur von Hippel and Victor Weisskopf. In April 1940, early in the Second World War, Nazi Germany invaded and occupied Denmark. To prevent the Germans from discovering Max von Laue's and James Franck's gold Nobel medals, Bohr had de Hevesy dissolve them in aqua regia. In this form, they were stored on a shelf at the Institute until after the war, when the gold was precipitated and the medals re-struck by the Nobel Foundation. Bohr's own medal had been donated to an auction to the Fund for Finnish Relief, and was auctioned off in March of 1940, along with the medal of August Krogh. The buyer later donated the two medals to the Danish Historical Museum in Frederiksborg Castle, where they are still kept. Bohr kept the Institute running, but all the foreign scholars departed; In September 1941, Heisenberg, who had become head of the German nuclear energy project, visited Bohr in Copenhagen. During this meeting the two men took a private moment outside, the content of which has caused much speculation, as both gave differing accounts. According to Heisenberg, he began to address nuclear energy, morality and the war, to which Bohr seems to have reacted by terminating the conversation abruptly while not giving Heisenberg hints about his own opinions. Ivan Supek, one of Heisenberg's students and friends, claimed that the main subject of the meeting was Carl Friedrich von Weizsäcker, who had proposed trying to persuade Bohr to mediate peace between Britain and Germany; In September 1943, word reached Bohr and his brother Harald that the Nazis considered their family to be Jewish, since their mother was Jewish, and that they were therefore in danger of being arrested. The Danish resistance helped Bohr and his wife escape by sea to Sweden on 29 September. The next day, Bohr persuaded King Gustaf V of Sweden to make public Sweden's willingness to provide asylum to Jewish refugees. On 2 October 1943, Swedish radio broadcast that Sweden was ready to offer asylum, and the mass rescue of the Danish Jews by their countrymen followed swiftly thereafter. Some historians claim that Bohr's actions led directly to the mass rescue, while others say that, though Bohr did all that he could for his countrymen, his actions were not a decisive influence on the wider events. Eventually, over 7,000 Danish Jews escaped to Sweden; When the news of Bohr's escape reached Britain, Lord Cherwell sent a telegram to Bohr asking him to come to Britain. Bohr arrived in Scotland on 6 October in a de Havilland Mosquito operated by the British Overseas Airways Corporation (BOAC); Bohr was warmly received by James Chadwick and Sir John Anderson, but for security reasons Bohr was kept out of sight. He was given an apartment at St James's Palace and an office with the British Tube Alloys nuclear weapons development team; On 8 December 1943, Bohr arrived in Washington, D.C., where he met with the director of the Manhattan Project, Brigadier General Leslie R. Groves, Jr. He visited Einstein and Pauli at the Institute for Advanced Study in Princeton, New Jersey, and went to Los Alamos in New Mexico, where the nuclear weapons were being designed; For security reasons, he went under the name of "Nicholas Baker" in the United States, while Aage became "James Baker"; Oppenheimer suggested that Bohr visit President Franklin D. Roosevelt to convince him that the Manhattan Project should be shared with the Soviets in the hope of speeding up its results. Bohr's friend, Supreme Court Justice Felix Frankfurter, informed President Roosevelt about Bohr's opinions, and a meeting between them took place on 26 August 1944. Roosevelt suggested that Bohr return to the United Kingdom to try to win British approval; With the war now ended, Bohr returned to Copenhagen on 25 August 1945, and was re-elected President of the Royal Danish Academy of Arts and Sciences on 21 September; The Second World War demonstrated that science, and physics in particular, now required considerable financial and material resources. To avoid a brain drain to the United States, twelve European countries banded together to create CERN, a research organisation along the lines of the national laboratories in the United States, designed to undertake Big Science projects beyond the resources of any one of them alone. Questions soon arose regarding the best location for the facilities. Bohr and Kramers felt that the Institute in Copenhagen would be the ideal site. Pierre Auger, who organised the preliminary discussions, disagreed; he felt that both Bohr and his Institute were past their prime, and that Bohr's presence would overshadow others. After a long debate, Bohr pledged his support to CERN in February 1952, and Geneva was chosen as the site in October. The CERN Theory Group was based in Copenhagen until their new accommodation in Geneva was ready in 1957. Victor Weisskopf, who later became the Director General of CERN, summed up Bohr's role, saying that "there were other personalities who started and conceived the idea of CERN. The enthusiasm and ideas of the other people would not have been enough, however, if a man of his stature had not supported it; Meanwhile, Scandinavian countries formed the Nordic Institute for Theoretical Physics in 1957, with Bohr as its chairman. He was also involved with the founding of the Research Establishment Risø of the Danish Atomic Energy Commission, and served as its first chairman from February 1956. Bohr died of heart failure at his home in Carlsberg on 18 November 1962. He was cremated, and his ashes were buried in the family plot in the Assistens Cemetery in the Nørrebro section of Copenhagen, along with those of his parents, his brother Harald, and his son Christian. Years later, his wife's ashes were also interred there. On 7 October 1965, on what would have been his 80th birthday, the Institute for Theoretical Physics at the University of Copenhagen was officially renamed to what it had been called unofficially for many years: the Niels Bohr Institute; Bohr received numerous honours and accolades. In addition to the Nobel Prize, he received the Hughes Medal in 1921, the Matteucci Medal in 1923, the Franklin Medal in 1926, the Copley Medal in 1938, the Order of the Elephant in 1947, the Atoms for Peace Award in 1957 and the Sonning Prize in 1961. He became foreign member of the Royal Netherlands Academy of Arts and Sciences in 1923, and of the Royal Society in 1926. The Bohr model's semicentennial was commemorated in Denmark on 21 November 1963 with a postage stamp depicting Bohr, the hydrogen atom and the formula for the difference of any two hydrogen energy levels. Several other countries have also issued postage stamps depicting Bohr. In 1997, the Danish National Bank began circulating the 500-krone banknote with the portrait of Bohr smoking a pipe. An asteroid, 3948 Bohr, was named after him, as was the Bohr lunar crater and bohrium, the chemical element with atomic number 107
Citations
Unknown Source
Citations
Name Entry: Bohr, Niels, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "authorizedForm"
},
{
"contributor": "LC",
"form": "authorizedForm"
},
{
"contributor": "aps",
"form": "authorizedForm"
},
{
"contributor": "lc",
"form": "authorizedForm"
},
{
"contributor": "cjh",
"form": "authorizedForm"
},
{
"contributor": "WorldCat",
"form": "authorizedForm"
},
{
"contributor": "crnlu",
"form": "authorizedForm"
},
{
"contributor": "nyu",
"form": "authorizedForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Bohr, Niels Henrik David, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "authorizedForm"
},
{
"contributor": "WorldCat",
"form": "authorizedForm"
},
{
"contributor": "oac",
"form": "authorizedForm"
},
{
"contributor": "aps",
"form": "authorizedForm"
},
{
"contributor": "LAC",
"form": "authorizedForm"
},
{
"contributor": "NLA",
"form": "authorizedForm"
},
{
"contributor": "uchic",
"form": "authorizedForm"
},
{
"contributor": "yale",
"form": "authorizedForm"
},
{
"contributor": "ahub",
"form": "authorizedForm"
},
{
"contributor": "mhs",
"form": "authorizedForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: بوهر, نيلز, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "authorizedForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Bor, Nil's, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Bohr, N. (Niels), 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Boerh, Niersi, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Boer, Niersi, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: Бор, Нильс, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest
Name Entry: ボーア, ニールス, 1885-1962
Found Data: [
{
"contributor": "VIAF",
"form": "alternativeForm"
}
]
Note: Contributors from initial SNAC EAC-CPF ingest